有理数知识点总结——成都三心学堂家教网
来源:成都三心学堂 发布时间:2023-08-27 浏览次数:867
定义:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。概况:有理数为整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。如-1+(-1)=-|1+1|=-2 、 1.1+1.1=2.2
2.异号两数相加,若绝对值不等,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。若绝对值相等即互为相反数的两个数相加得0。3.一个数同0相加,仍得这个数。3.14+0=3.14
注意:
一是确定结果的符号;二是求结果的绝对值。在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0。从而确定用那一条法则。在应用过程中,一定要牢记“先符号,后绝对值”,熟练以后就不会出错了。多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算。
两变:减法运算变加法运算,减数变成它的相反数做加数。
1.两数相乘,同号为正,异号为负,并把绝对值相乘。
4.几个不是0的数相乘,负因数得个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
5.几个数相乘,如果其中有因数为0,那么积等于0。
2.两数相除,同号得正,异号得负,并把绝对值相除。
有理数的加减乘除混合运算,如无括号指出先做什么运算,按照“先乘除,后加减”的顺序进行,如果是同级运算,则按照从左到右的顺序依次计算。
正整数
整数{ 零
负整数
有理数{
正分数
分数{
负分数
(2)按有理数的性质分类:
正整数
正数{
正分数
有理数{ 零
负整数
负数{
负分数 |
|
A. 整数和有限小数统称为有理数 B. 无理数都是无限小数 C. 数轴上的点表示的数都是实数 D. 实数包括正实数,负实数和零 |
|
|
A.正数和负数互为相反数 B.0是最小的整数 C.在数轴上表示+4的点与表示﹣3的点之间相距1个单位长度 D.所有有理数都可以用数轴上的点表示 |
3.下列说法: ①0 是绝对值最小的有理数; ②相反数大于自身的数是负数; ③数轴上原点两侧的数互为相反数; ④两个数相互比较绝对值大的反而小. 其中正确的是( ) |
|
|
|
|
A.有理数都是有限小数 B.无理数都是无限小数 C.带根号的数都是无理数 D.数轴上任何一点都表示有理数 |
|
|
A.有理数分为正有理数和负有理数 B.在数轴上表示﹣a的点一定在原点的左边 C.任何有理数的绝对值都是正数 D.互为相反数的两个数的绝对值相等 |
|
|
A.有理数分为正数和负数 B.是所有的有理数都能用数轴上的点表示 C.若数轴上的点A在点B的右边,则点A比表示的数比点B表示的数小 D.有理数中,没有最大的有理数,也没有最小的有理数 |
|
①最大的负整数是﹣1; ②数轴上表示数2和﹣2的点到原点的距离相等; ③有理数分为正有理数和负有理数; ④a+5一定比a大; ⑤在数轴上7与9之间的有理数是8. |
|
|
8.根据以下各数:+2,-(+4),,|-3.5|,0,-3,回答问题。(1)上面各数中,正分数有:______,负整数有:________,整数有:_______。
(2)在数轴上表示上面各数,再用“<”号把各数连接起来。(1)正分数有:;负整数有:-(+4),-3;整数有:+2,-(+4),0,-3;
(2)解:数轴如下:
-(+4)<-3<0<+2<<|-3.5|。