小学数学,典型应用题——成都三心学堂家教网

来源:成都三心学堂    发布时间:2024-07-15    浏览次数:2053
牛吃草问题

【含义】


“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。这类问题的特点在于要考虑草边吃边长这个因素。

【数量关系】


草总量=原有草量+草每天生长量×天数

【解题思路和方法】

解这类题的关键是求出草每天的生长量。
例1:




这是一片新鲜的牧场,现有400份草,每天都均匀地生长6份草。若一开始放26头奶牛,每头奶牛每天吃1份草。这片牧场的草够奶牛吃多少天?
解:
1、本题考查的是牛吃草的问题,解决本题的关键是要求出每天新增加的草量,在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草。
2、由题目可知:原有的草量+新长的草量=总的草量。
奶牛除了要吃掉原有的草,也要吃掉新长的草。原有的草量是不变的。每天新长的草量是匀速的,每天都长6份,每头奶牛每天吃1份,新长的草刚好够6头奶牛吃的量,那么剩下的20头奶牛吃的就是原有的草,每天吃20份,400÷20=20(天),够吃20天。

例2:



一水库原有存水量一定,河水每天均匀入库。5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。若要求6天抽干,需要 多少台同样的抽水机?
解:
设每台抽水机每天可抽1份水。
5台抽水机20天抽水:5×20=100(份)
6台抽水机15天抽水:6×15=90(份)
每天入库的水量:(100-90)÷(20-15)=2(份)
原有的存水量:100-20×2=60(份)
需抽水机台数:60÷6+2=12(台)
答:要求6天抽干,需要12台同样的抽水机。

例3:



某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。如果同时打开7个检票口,那么需 多少分钟?
解:
1、本题考查的是牛吃草的问题,“旅客”相当于“草”,检票口相当于“牛”。
2、由题目可知,旅客总数由两部分组成:一部分是开始检票前已经排队的原有旅客,另一部分是开始检票后新来的旅客。设1个检票口1分钟检票的人数为1份。那么4个检票口30分钟检票4×30=120(份),5个检票口20分钟检票5×20=100(份),多花了10分钟多检了120-100=20(份),那么每分钟新增顾客数量为20÷10=2(份)。那么原有顾客总量为:120-30×2=60(份)。同时打开7个检票口,我们可以让2个检票口专门通过新来的顾客,其余的5个检票口通过原来的顾客,需要60÷5=12(分钟)。


鸡兔同笼问题

【含义】


这是古典的算术问题。已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

【数量关系】

第一鸡兔同笼问题:
假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)
假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)
第二鸡兔同笼问题:
假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)
假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)

【解题思路和方法】

解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。
例1:


鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?
假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。
例2:


动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?
解:
假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只,因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)
例3:


李阿姨的农场里养了一批鸡和兔,共有144条腿,如果鸡数和兔数互换,那么共有腿156条。鸡和兔一共有多少只?
解:
根据题意可得:前后鸡的总只数=前后兔的总只数。把1只鸡和1只兔子看做一组,共有6条腿。前后鸡和兔的总腿数有144+156=300(条),所以共有300÷6=50(组),也就是鸡和兔的总只数有50只。
例4:


一次数学考试,只有20道题。做对一题加5分,做错一题倒扣3分(不做算错)。乐乐这次考试得了84分,那么乐乐做对了多少道题?
解:
如果20题全部做对,应该得20×5=100(分),而实际得了84分,少了100-84=16(分)。做错一题和做对一题之间,相差5+3=8(分),所以少了的16分,也就是做错了16÷8=2(题)。一共20题,所以乐乐做对了20-2=18(题)

预约报名

请选择年级
  • 幼儿早教
  • 小学
  • 初中
  • 高中
选择学科
  • 数学
  • 语文
  • 英语
  • 物理
  • 化学

ICP备案:蜀ICP备2021026008号-1   网站建设创新互联